Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
Luminescence ; 39(5): e4743, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692854

RESUMEN

A unique luminescent lanthanide metal-organic framework (LnMOF)-based fluorescence detection platform was utilized to achieve sensitive detection of vomitoxin (VT) and oxytetracycline hydrochloride (OTC-HCL) without the use of antibodies or biomolecular modifications. The sensor had a fluorescence quenching constant of 9.74 × 106 M-1 and a low detection limit of 0.68 nM for vomitoxin. Notably, this is the first example of a Tb-MOF sensor for fluorescence detection of vomitoxin. We further investigated its response to two mycotoxins, aflatoxin B1 and ochratoxin A, and found that their Stern-Volmer fluorescence quenching constants were lower than those of VT. In addition, the fluorescence sensor realized sensitive detection of OTC-HCL with a detection limit of 0.039 µM. In conclusion, the method has great potential as a sensitive and simple technique to detect VT and OTC-HCL in water.


Asunto(s)
Estructuras Metalorgánicas , Oxitetraciclina , Terbio , Oxitetraciclina/análisis , Oxitetraciclina/química , Terbio/química , Estructuras Metalorgánicas/química , Espectrometría de Fluorescencia , Colorantes Fluorescentes/química , Límite de Detección , Agua/química , Fluorescencia , Contaminantes Químicos del Agua/análisis
2.
Food Chem ; 447: 138966, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38479142

RESUMEN

In this work, a simple, convenient and cost-effective colorimetric aptasensor was successfully constructed for the detection of antibiotic residues in raw milk based on the property that aptamer (Apt) synergistically enhances the catalase-like activity of MOF-235. Under optimised conditions, the proposed colorimetric aptasensor exhibited a wide detection range (15-1500 nM) with a low detection limit (6.92 nM). Furthermore, the proposed aptasensor demonstrated high selectivity, good resistance to interference and storage stability. The proposed aptasensor was validated by spiking recovery in camel milk, cow milk and goat milk with satisfactory recoveries, which demonstrated the great potential of the aptasensor for further application in real food samples, and also suggested that MOF-235 can be used as a potential universal platform to build a sensitive detection platform for other targets.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Oxitetraciclina , Animales , Oxitetraciclina/análisis , Leche/química , Colorimetría , Aptámeros de Nucleótidos/química , Peroxidasas , Límite de Detección , Nanopartículas del Metal/química , Oro/química
3.
Food Chem ; 447: 138998, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38503068

RESUMEN

As a typical kind of new pollutants, there are still some challenges in the rapid detection of antibiotics. In this work, a sensitive fluorescent probe based on boron-doped carbon dots (B-CDs) in combination with thermo-responsive magnetic molecularly imprinted polymers (T-MMIPs) was constructed for the detection of oxytetracycline (OTC) in tea drinks. T-MMIPs were designed, fabricated and employed to enrich OTC at trace level from tea drinks, and B-CDs were utilized as the fluorescent probe to detect the concentration of OTC. The proposed method exhibited good linear relationship with OTC concentration from 0.2 to 60 µg L-1 and the limit of detection was 0.1 µg L-1. The established method has been successfully validated with tea beverages. Present work was the first attempt application of T-MMIPs in combination with CDs in detection of OTC, and demonstrated that the proposed method endowed the detection of OTC with high selectivity, sensitivity, reliability and wide application prospect, meanwhile offered a new strategy for the method establishment of rapid and sensitive detection of trace antibiotics in food and other matrices.


Asunto(s)
Impresión Molecular , Oxitetraciclina , Oxitetraciclina/análisis , Boro , Impresión Molecular/métodos , Carbono , Colorantes Fluorescentes , Reproducibilidad de los Resultados , Polímeros , Antibacterianos , Extracción en Fase Sólida/métodos , , Fenómenos Magnéticos , Límite de Detección
4.
J Environ Manage ; 353: 120169, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38290264

RESUMEN

Metal-organic frameworks (MOFs) were promising adsorbents for removing antibiotics, but the inherent poor recyclability of MOF powders limits further application. Moreover, the dominant adsorption mechanisms and their quantitative assessment are less studied. Here, ultrahigh adsorption capacities of 821.51 and 931.87 mg g-1 for tetracycline (TC) and oxytetracycline (OTC), respectively, were realised by a novel adsorbents (biochar loaded with MIL-88B(Fe), denoted as BC@MIL-88B(Fe)), which were further immobilised in a 3D porous gelatin (GA) substrate. The obtained BCM/GA200 showed superior adsorption performance under wide pH ranges and under the interference of humic acid. Moreover, it can survive >8 cycles and even maintain high adsorption efficiency in different actual water samples. Notably, BCM/GA200 can selectively remove tetracyclines in a multivariate system containing other kinds of antibiotics and from a dynamic adsorption system. Most importantly, the results of X-ray photoelectron spectroscopy, 2D Fourier transform infrared correlation spectroscopy (2D-FTIR-COS) and density functional theory techniques revealed that (1) for TC adsorption, at pH < 4.0, the contribution of complexation was 25 %-45 %, whereas pore filling and hydrogen bonding accounted for 39 %-72 % of the total uptake. At 4.0 < pH < 10.0, the contribution of complexation increased to 60 %-82 %, whereas electrostatic attraction and π-π interaction were 4 %-13 % and 2 %-10 %, respectively. (2) For OTC adsorption, complexation was dominant at 3.0 < pH < 10.0, accounting for 55 %-86 % of the total uptake, and electrostatic attraction and π-π interactions caused 3 %-10 % and 3 %-15 %, respectively. (3) At pH > 10.0, pore filling dominated TC and OTC adsorption. Finally, the reaction sequences of the main adsorption mechanisms were also probed by 2D-FTIR-COS. This work solves the poor recyclability of MOF powders and provides a mechanistic insight into antibiotic removal by MOFs.


Asunto(s)
Estructuras Metalorgánicas , Oxitetraciclina , Contaminantes Químicos del Agua , Tetraciclinas/análisis , Agua/química , Adsorción , Contaminantes Químicos del Agua/química , Antibacterianos/análisis , Oxitetraciclina/análisis , Tetraciclina , Estructuras Metalorgánicas/química , Cinética
5.
Anal Methods ; 16(2): 196-204, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38099444

RESUMEN

A metal-organic framework (MOF) is a good carrier for molecular imprinting due to its high surface area and strong adsorption capacity, but its poor dispersibility in aqueous solution is one of the significant drawbacks, which can severely impede its effectiveness. Amphiphilic block copolymers are good hydrophilic materials and have the potential to overcome the shortcomings of MOFs. In order to improve the hydrophilicity of molecularly imprinted fluorescent materials, we have applied a combination of molecularly imprinted technology and amphiphilic block copolymers on MOFs for the first time. Amphiphilic PAVE copolymer is selected as the molecular imprinted functional monomer to improve the hydrophilicity of UiO-66-NH2. The synthesized PAVE-MOF-MIP has adequate water dispersion ability and fluorescence activity. When encountering oxytetracycline, PAVE-MOF-MIP will produce fluorescence quenching, it is used to construct a fluorescence detection platform for oxytetracycline detection. Compared with traditional MIP@MOF, PAVE-MOF-MIP has better water dispersion ability and detection accuracy. Under optimal conditions, the linear range of oxytetracycline detection is 10-100 µmol L-1, and the minimum limit of detection (LOD) is 86 nmol L-1. This paper proposes a novel approach to use amphiphilic block copolymers as molecularly imprinted monomers on MOFs, providing an innovative idea that has not been previously explored.


Asunto(s)
Estructuras Metalorgánicas , Oxitetraciclina , Animales , Oxitetraciclina/análisis , Leche/química , Polímeros , Agua
6.
Ecotoxicol Environ Saf ; 268: 115683, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976931

RESUMEN

In marine sediments surrounding salmon aquaculture sites, organic matter (OM) enrichment has been shown to influence resident bacterial community composition; however, additional effects on these communities due to combined use of the sea-lice therapeutant emamectin benzoate (EMB) and the widely used antibiotic oxytetracycline (OTC) are unknown. Here, we use sediment microcosms to assess the influence of OM, EMB, and OTC on benthic bacterial communities. Microcosms consisted of mud or sand sediments enriched with OM (fish and feed wastes) and spiked with EMB and OTC at environmentally-relevant concentrations. Samples were collected from initial matrices at the initiation of the trial and after 110 days for 16 S rRNA gene sequencing of the V3-V4 region and microbiome profiling. The addition of OM in both mud and sand sediments reduced alpha diversities; for example, an average of 1106 amplicon sequence variants (ASVs) were detected in mud with no OM addition, while only 729 and 596 ASVs were detected in mud with low OM and high OM, respectively. Sediments enriched with OM had higher relative abundances of Spirochaetota, Firmicutes, and Bacteroidota. For instance, Spirochaetota were detected in sediments with no OM with a relative abundance range of 0.01-1.2%, while in sediments enriched with OM relative abundance varied from 0.16% to 26.1%. In contrast, the addition of EMB (60 ng/g) or OTC (150 ng/g) did not result in distinct taxonomic shifts in the bacterial communities compared to un-spiked sediments during the timeline of this experiment. EMB and OTC concentrations may have been below effective inhibitor concentrations for taxa in these communities; further work should explore gene content and the presence of antibiotic resistance genes (ARGs) in sediment-dwelling bacteria.


Asunto(s)
Oxitetraciclina , Animales , Oxitetraciclina/análisis , Arena , Antibacterianos , Sedimentos Geológicos/microbiología , Bacterias/genética
7.
Environ Sci Pollut Res Int ; 30(54): 115994-116003, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37897579

RESUMEN

Copper (Cu) and tetracyclines (TCs) often coexist in agricultural soils because of the use of manures on farmland; however, the influence of Cu on the bioavailability of TCs is still unclear, especially for cases with aging Cu. The freely dissolved concentrations (FDCs) of TCs are believed to be directly related to their bioavailability. In the present study, the FDCs of TCs were determined using organic-diffusive gradients in thin films (o-DGT), and the influence of Cu on the FDCs of TCs in soils was evaluated. The results showed that the FDCs of tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) were 0.11-0.93, 0.28-1.02, and 0.24-0.53 µg/kg in the CK groups (no Cu added) and accounted for 0.09-0.58, 0.10-1.40, and 0.05-1.19‰ of their total concentrations which ranged from 0.2 to 10.0 mg/kg for TC, OTC, and CTC, respectively. The co-contamination of Cu reduced the FDCs of TCs in most cases, and aging increased the influence of Cu. The presence of Cu resulted in a decrease in the TC FDC by 35.48-95.04% in aged soils and 3.42-87.19% in newly prepared soils. FTIR analysis revealed that aging facilitated the bonding of Cu to soil particles via Cu-O, and Cu bonded to groups such as hydroxyl groups (-OH) in TCs. Our results suggested that the presence of Cu might reduce the bioavailability of TCs, and aging would enhance these effects. This is helpful for the bioavailability analysis of TCs under co-contamination of heavy metals.


Asunto(s)
Clortetraciclina , Oxitetraciclina , Contaminantes del Suelo , Tetraciclina/análisis , Cobre/análisis , Suelo , Contaminantes del Suelo/análisis , Antibacterianos/análisis , Tetraciclinas/análisis , Oxitetraciclina/análisis
8.
Sci Total Environ ; 905: 167005, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717773

RESUMEN

The sorption of antibiotics on soil minerals and their cotransport have been widely studied for the past few years; however, these processes in concentrated salt solutions (estuary-like conditions) are not fully understood. This study aims to determine the possible sorption of oxytetracycline (OTC) on various natural and synthesized microsized minerals (including haematite, goethite, kaolinite, bentonite, lateritic, kaolinitic and illitic soil clays) under conditions mimicking pure, fresh, brackish and sea waters. The sorption of OTC was found to decrease in surface charge (herein zeta potential), hence altering the colloidal properties of the materials used. The sorption capacities of soil clays for OTC follow the inequality illitic soil clay > kaolinitic soil clay > lateritic soil clay, and the sorption capacities were found to decrease at higher salt concentrations. Seawater can intensify the release of the sorbed OTC from soil clay surfaces while favouring the coaggregation of the remaining OTC with soil clays. This implies that the long-range transport of OTC or other similar antibiotics can be governed by the mineralogical composition/properties of the suspended particles. More importantly, increasing salt concentrations in estuaries may form a chemical barrier at which limited amounts of OTC/antibiotics can pass through, while the remaining OTC/antibiotics can be favoured to aggregate simultaneously with suspended mineral particles.


Asunto(s)
Oxitetraciclina , Oxitetraciclina/análisis , Antibacterianos/química , Arcilla , Silicatos de Aluminio/química , Caolín/química , Suelo/química , Minerales/química , Cloruro de Sodio , Coloides , Océanos y Mares , Adsorción
9.
Chemosphere ; 338: 139578, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37478999

RESUMEN

The efficient remediation of antibiotic-contaminated soil is critical for agroecosystem and human health. Using the cost-effective and feedstock-independent hydrochar with rich oxygen-containing functional groups as a soil remediation material has become a hot concern nowadays. However, the feasibility and effectiveness of hydrochar amendment in antibiotic-contaminated soil still remain unknown. Therefore, this study investigated the remediation effect and potential mechanisms of different hydrochars from cow manure (H-CM), corn stalk (H-CS) and Myriophyllum aquaticum (H-MA) at two levels (0.5% and 1.0%) in oxytetracycline (OTC)-contaminated soil using a pot experiment. Results showed that compared with CK, OTC content in the soils amended with H-CM and H-MA was decreased by 14.02-15.43% and 9.23-24.98%, respectively, whereas it was increased by 37.03-42.64% in the soils amended with H-CS. Additionally, all hydrochar amendments effectively reduced the OTC uptake in root and shoot of Chinese cabbage by 10.41-57.99% and 31.92-65.99%, respectively. The response of soil microbial community to hydrochar amendment heavily depended on feedstock type rather than hydrochar level. The soil microbial metabolism (e.g., carbohydrate metabolism, amino acid metabolism) was enhanced by hydrochar amendment. The redundancy analysis suggested that TCA cycle was positively related to the abundances of OTC-degrading bacteria (Proteobacteria, Arthrobacter and Sphingomonas) in all hydrochar-amended soils. The hydrochar amendment accelerated the soil OTC removal and reduced plant uptake in soil-Chinese cabbage system by altering soil properties, enhancing OTC-degrading bacteria and promoting microbial metabolism. These findings demonstrated that the cost-effective and sustainable hydrochar was a promising remediation material for antibiotic-contaminated soil.


Asunto(s)
Brassica , Microbiota , Oxitetraciclina , Contaminantes del Suelo , Humanos , Oxitetraciclina/farmacología , Oxitetraciclina/análisis , Suelo/química , Antibacterianos/farmacología , Estiércol , Microbiología del Suelo , Contaminantes del Suelo/análisis
10.
Food Chem ; 426: 136535, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331139

RESUMEN

Antibiotic monitoring remains vital to ensure human health and safety in the environment and foods. As the most popular detection method, photoelectrochemical (PEC) sensor can achieve rapid and accurate detection of antibiotics with the advantages of high sensitivity, easy-to-preparation process, as well as high selectivity. Herein, an extremely-efficient visible-light responsible ZnO/C nanocomposite was prepared and combined with acetylene black (as an enhanced conductive matrix), and the electron migration efficiency was greatly accelerated. Meanwhile, a molecularly imprinted polymer obtained by electrical agglomeration was conjugated as a specific recognizing site for target. Furthermore, the as-prepared rMIP-PEC sensor showed a low detection limit (8.75 pmol L-1, S/N = 3) in a wide linear detection range of 0.01-1000 nmol L-1 for oxytetracycline (OTC), with excellent selectivity and long-term stability. Our work shed light on applying C-doped ZnO semiconductor and molecularly imprinted polymer as photoelectric active sensing materials for rapid and accurate analysis of antibiotics in foods and environment.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Nanocompuestos , Oxitetraciclina , Óxido de Zinc , Humanos , Animales , Oxitetraciclina/análisis , Polímeros Impresos Molecularmente , Leche/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Antibacterianos/análisis , Límite de Detección , Impresión Molecular/métodos
11.
Artículo en Inglés | MEDLINE | ID: mdl-37310293

RESUMEN

The aim of this study was to investigate the transfer of residues of five ß-lactam antibiotics (ampicillin, penicillin G, cloxacillin, dicloxacillin and cephalexin) and two tetracyclines (tetracycline and oxytetracycline) in the processing of cheese and whey powder, evaluating the effect of the processes and the final concentration in each product generated. Raw milk was fortified at two concentration levels with the seven antibiotics. The first concentration level (C1) was chosen according to the maximum residue limit (MRL) of each antibiotic (ampicillin and penicillin G: 4 µg kg-1; cloxacillin and dicloxacillin: 30 µg kg-1; cephalexin, tetracycline and oxytetracycline: 100 µg kg-1). The second concentration level (C2) was spiked as follows according to each antibiotic: 0.5 MRL (cloxacillin, dicloxacillin, cephalexin), 0.1 MRL (tetracycline and oxytetracycline) and 3 MRL (ampicillin and penicillin G). The antibiotics were analyzed by LC-MS/MS. No ampicillin or penicillin G residues were found in cheese or whey powder, although they were detected in whey at concentrations similar to those added to raw milk. Cephalexin was mostly distributed in whey between 82% and 96%, being the antibiotic that presented the highest concentration in whey powder (784 ± 98 µg kg-1) when milk was spiked at the MRL. The whey distribution of cloxacillin and dicloxacillin ranged from 57% to 59% for cloxacillin and from 46% to 48% for dicloxacillin, and both concentrated in whey powder. Tetracyclines were the antibiotics that concentrated in cheese, with retentions between 75% and 80% for oxytetracycline and between 83% and 87% for tetracycline. The distribution of antibiotics in the dissimilar stages of the cheese and whey powder production processes, as well as their concentration in the final products, depend on each type of antibiotic. Knowledge of the transfer of antibiotic residues during the process and final disposal is an input for the risk assessment of their consumption.


Asunto(s)
Queso , Residuos de Medicamentos , Oxitetraciclina , Animales , Leche/química , beta-Lactamas/análisis , Tetraciclina/análisis , Polvos/análisis , Queso/análisis , Oxitetraciclina/análisis , Suero Lácteo/química , Dicloxacilina/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antibacterianos/análisis , Tetraciclinas/análisis , Cloxacilina , Ampicilina , Cefalexina , Residuos de Medicamentos/análisis
12.
Chemosphere ; 336: 139246, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37330069

RESUMEN

Tetracycline (TC) and Oxytetracycline (OTC) are common antibiotics increasingly detected in the environment, posing a potential risk to human and aquatic lives. Although conventional methods such as adsorption and photocatalysis are used for the degradation of TC and OTC, they are inefficient in removal efficiency, energy yield, and toxic byproduct generation. Herein, a falling-film dielectric barrier discharge (DBD) reactor coupled with environmentally friendly oxidants (hydrogen peroxide (HPO), sodium percarbonate (SPC), and HPO + SPC) was applied, and the treatment efficiency of TC and OTC was investigated. Experimental results showed that moderate addition of the HPO and SPC exhibited a synergistic effect (SF > 2), significantly improving the antibiotic removal ratio, total organic removal ratio (TOC), and energy yield by more than 50%, 52%, and 180%, respectively. After 10 min of DBD treatment, the introduction of 0.2 mM SPC led to a 100% antibiotic removal ratio and a TOC removal of 53.4% and 61.2% for 200 mg/L TC and 200 mg/L OTC, respectively. Also, 1 mM HPO dosage led to 100% antibiotic removal ratios after 10 min of DBD treatment and a TOC removal of 62.4% and 71.9% for 200 mg/L TC and 200 mg/L OTC, respectively. However, the DBD + HPO + SPC treatment method had a detrimental effect on the performance of the DBD reactor. After 10 min of DBD plasma discharge, the removal ratios for TC and OTC were 80.8% and 84.1%, respectively, when 0.5 mM HPO + 0.5 mM SPC was added. Moreover, principal component and hierarchical cluster analysis confirmed the differences between the treatment methods. Furthermore, the concentration of oxidant-induced in-situ generated ozone and hydrogen peroxide were quantitatively determined, and their indispensable roles during the degradation process were established via radical scavenger tests. Finally, the synergetic antibiotic degradation mechanisms and pathways were proposed, and the toxicities of the intermediate byproducts were evaluated.


Asunto(s)
Compuestos Heterocíclicos , Oxitetraciclina , Contaminantes Químicos del Agua , Humanos , Oxitetraciclina/toxicidad , Oxitetraciclina/análisis , Peróxidos , Peróxido de Hidrógeno , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Antibacterianos/toxicidad , Antibacterianos/metabolismo , Tetraciclina/análisis , Compuestos Heterocíclicos/análisis , Oxidantes
13.
J Environ Manage ; 344: 118340, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37336018

RESUMEN

Co-existence of antibiotics (ABX) in soil may expand the environmental harm of pesticide pollution. Our study investigated the combined effects of five antibiotics chlortetracycline (CTC), oxytetracycline (OTC), tetracycline (TC), sulfamethoxazole (SMX), enrofloxacin (ENR) on enantioselective fate of zoxamide (ZXM) and soil health. The results showed that S-(+)-ZXM preferentially dissipated in soil. ABX prolonged dissipation half-life and reduced enantioselectivity of ZXM. Soil was detected to be more acidic after long-term treatment of ZXM and ABX. Lowest soil available N, P, K were found in ZXM + SMX, ZXM + OTC and ZXM + SMX groups at 80 days, respectively. ABX had demonstrated effective promotion of catalase (S-CAT), urease (S-UE) and negative impact on dehydrogenase (S-DHA), sucrase (S-SC) activities. Bacteria Lysobacter, Sphingomonas and fungus Mortierella were identified as the most dominant genera, which possessed as potential microbial resources for removal of composite pollution from ZXM and ABX. SMX and TC, SMX, ENR, respectively, contributed to the alteration of bacteria and fungi community abundance. Soil acidity, available N and enzyme activity showed stronger correlations with bacteria and fungi compared to other environmental factors. Our findings highlighted the interactions between ZXM and ABX from the perspective of soil microenvironment changes. Moreover, a theoretical basis for the mechanism was actively provided.


Asunto(s)
Oxitetraciclina , Contaminantes del Suelo , Antibacterianos/farmacología , Suelo , Estereoisomerismo , Oxitetraciclina/análisis , Tetraciclina , Sulfametoxazol , Bacterias , Contaminantes del Suelo/análisis
14.
Bioresour Technol ; 382: 129179, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37196746

RESUMEN

High concentrations of antibiotics in swine wastewater raises concerns about the potential adverse effects of anaerobic digestion (AD). Current studies mainly focused on the effects of various antibiotic concentrations. However, these studies didn't take into account the fluctuation of swine wastewater quality and the change of reactor operating conditions in practical engineering applications. In this study, it was found that in the operating systems with COD of 3300 mg/L and hydraulic retention time (HRT) of 4.4 days, the continuous addition of oxytetracycline for 30 days had no effect on the AD performance. Nevertheless, when COD and HRT were changed to 4950 mg/L and 1.5 days respectively, oxytetracycline at 2 and 8 mg/L increased the cumulative methane yield by 27% and 38% at the cost of destroying cell membrane, respectively, while oxytetracycline at 0.3 mg/L improved the performance and stability of AD. These results could be referred for practical engineering applications.


Asunto(s)
Oxitetraciclina , Eliminación de Residuos Líquidos , Aguas Residuales , Animales , Anaerobiosis , Antibacterianos , Reactores Biológicos , Metano , Oxitetraciclina/análisis , Porcinos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
15.
J Environ Manage ; 341: 118048, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141721

RESUMEN

Antibiotic residues in lake ecosystems have been widely reported; however, the vertical distribution of antibiotics in lake sediment profiles have rarely been examined. This study systematically revealed the vertical distribution pattern, sources, and risks of antibiotics in sediments of four typical agricultural lakes in central China. Nine of 33 target antibiotics were detected with a total concentration range of 39.3-18,250.6 ng/g (dry weight), and the order of average concentration was erythromycin (1447.4 ng/g) > sulfamethoxazole (443.7 ng/g) > oxytetracycline (62.6 ng/g) > enrofloxacin (40.7 ng/g) > others (0.1-2.1 ng/g). The middle-layer sediments (9-27 cm) had significantly higher antibiotic detected number and concentration than those in the top layer (0-9 cm) and bottom layer (27-45 cm) (p < 0.05). Correlation analysis showed that significant relationships existed between antibiotic concentrations and the octanol-water partition coefficients (Kow) of antibiotics (p < 0.05). Redundancy analysis indicated that Pb, Co, Ni, water content, and organic matter (p < 0.05) jointly affected the distribution of antibiotics in sediment profiles. Risk assessment showed that the highest potential ecological and resistance selection risks of antibiotics occurred in the middle-layer sediments, and oxytetracycline, tetracycline, and enrofloxacin had the most extensive potential risks in the sediment profiles. Additionally, the positive matrix factorization model revealed that human medical wastewater (54.5%) contributed more antibiotic pollution than animal excreta (45.5%) in sediment. This work highlights the inhomogeneous distribution of antibiotics in sediment profiles and provides valuable information for the prevention and control of antibiotic contamination in lakes.


Asunto(s)
Oxitetraciclina , Contaminantes Químicos del Agua , Animales , Humanos , Antibacterianos/análisis , Lagos/análisis , Lagos/química , Ecosistema , Oxitetraciclina/análisis , Enrofloxacina/análisis , Agua/análisis , Medición de Riesgo , China , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/química
16.
Analyst ; 148(7): 1507-1513, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36891736

RESUMEN

Tetracyclines are a class of antibiotics with a similar four-ringed structure. Due to this structural similarity, they are not easily differentiated from each other. We recently selected aptamers using oxytetracycline as a target and focused on an aptamer named OTC5, which has similar affinities for oxytetracycline (OTC), tetracycline (TC), and doxycycline (DOX). Tetracyclines exhibit an intrinsic fluorescence that is enhanced upon aptamer binding, allowing convenient binding assays and label-free detection. In this study, we analyzed the top 100 sequences from the previous selection library. Three other sequences were found to differentiate between different tetracyclines (OTC, DOX, and TC) by the selective enhancement of their intrinsic fluorescence. Among them, the OTC43 aptamer was more selective for OTC with a limit of detection (LOD) of 0.7 nM OTC, OTC22 was more selective for DOX (LOD 0.4 nM), and OTC2 was more selective for TC (0.3 nM). Using these three aptamers to form a sensor array, principal component analysis was able to discriminate between the three tetracyclines from each other and from the other molecules. This group of aptamers could be useful as probes for the detection of tetracycline antibiotics.


Asunto(s)
Aptámeros de Nucleótidos , Oxitetraciclina , Oxitetraciclina/análisis , Tetraciclina , Aptámeros de Nucleótidos/química , Antibacterianos/análisis , Tetraciclinas/análisis , Doxiciclina
17.
Environ Sci Technol ; 57(47): 18550-18562, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36474357

RESUMEN

The efficient and selective removal of refractory antibiotics from high-strength antibiotic production wastewater is crucial but remains a substantial challenge. In this study, a novel ozone micronano-bubble (MNB)-enhanced treatment system was constructed for antibiotic production wastewater treatment. Compared with conventional ozone, ozone MNBs exhibit excellent treatment efficiency for oxytetracycline (OTC) degradation and toxicity decrease. Notably, this study identifies the overlooked singlet oxygen (1O2) for the first time as a crucial active species in the ozone MNB system through probe and electron paramagnetic resonance methods. Subsequently, the oxidation mechanisms of OTC by ozone MNBs are systematically investigated. Owing to the high reactivity of OTC toward 1O2, ozone MNBs enhance the selective and anti-interference performance of OTC degradation in raw OTC production wastewater with complex matrixes. This study provides insights into the mechanism of ozone MNB-enhanced pollutant degradation and a new perspective for the efficient treatment of high-concentration industrial wastewater using ozone MNBs. In addition, this study presents a promising technology with scientific guidance for the treatment of antibiotic production wastewater.


Asunto(s)
Oxitetraciclina , Ozono , Oxitetraciclina/análisis , Aguas Residuales , Oxígeno Singlete , Antibacterianos
18.
J Hazard Mater ; 441: 129956, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36108497

RESUMEN

The threat of tetracycline antibiotics to the environment and human health is attracting widespread attention. The development of morphological analysis and quantitative techniques of multiple tetracyclines is of great significance for the evaluation of biochemical toxicity, wide-spectrum antibacterial property and degradation cycle between different tetracyclines. In this study, the white fluorescent Eu/Tb@CDs was synthesized and applied successfully to the identification and detection of the most widely used tetracycline antibiotics (tetracycline (TC), oxytetracycline (OC), chlortetracycline (CC) and doxycycline (DC)) with detection limits all below 1 nM. For the actual water samples with coexistence of the above 4 tetracyclines, their simultaneous morphology identification and accurate quantitative detection can also be realized through simple spectrometric measurement. In addition, the selective and competitive experiments have been carried out on the pollutants widely present in water, and the results have also confirmed that other pollutants could not interfere with the detection of the above 4 tetracyclines. It is undeniable that this work will conveniently and visually reveal the existence information and geographical distribution characteristics of different tetracycline antibiotics in the environment and their action mechanism on organisms.


Asunto(s)
Clortetraciclina , Oxitetraciclina , Antibacterianos/análisis , Doxiciclina/análisis , Colorantes Fluorescentes/análisis , Humanos , Oxitetraciclina/análisis , Tetraciclina/análisis , Tetraciclinas/análisis , Agua
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121768, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36049299

RESUMEN

The novel CuMnS nanoflower fluorescent probe based on Mn-doped CuS was developed to achieve the fluorescence detection of oxytetracycline hydrochloride (OTC), the fluorescent sensor has good selectivity and stability. The doping of Mn significantly increased the fluorescence intensity of CuS, which was above 10 times that of CuS. When the predominant species of OTC molecule was zwitterionic OTC+/-at the solution pH of about 5.00, the fluorescence quenching efficiency of CuMnS by OTC reached the highest. Through fluorescence lifetime and UV absorption, the sensing mechanism between CuMnS and OTC was found to be static quenching. Moreover, Multiwfn wavefunction analysis program based on density function theory (DFT) calculation was applied to compare the interactions between different OTC species and CuMnS at different pH, to reveal the micromechanism of fluorescence quenching of CuMnS by OTC from the views of atoms. The molecular surface quantitative analysis and basin analysis of different OTC species demonstrated that the N atom and O atoms of tricarbonylamide moiety of zwitterionic OTC+/- can provide lone pair electrons to form a non-fluorescent ground state complex with CuMnS. Meanwhile, the electrostatic attraction of OTC+/- with negatively charged CuMnS was also beneficial to the interaction, resulting in the effective fluorescence quenching of CuMnS. This work offers a convenient method for sensitively detecting OTC and broadens the application of CuMnS in the field of fluorescence detection.


Asunto(s)
Oxitetraciclina , Cobre , Colorantes Fluorescentes/química , Oxitetraciclina/análisis , Oxitetraciclina/química , Espectrometría de Fluorescencia/métodos
20.
J Agric Food Chem ; 70(51): 16106-16116, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36524955

RESUMEN

The valorization of poultry byproducts, like feathers (processed to feather meal), in animal feed could contribute to the presence of veterinary drugs, including antibiotics. An animal study was carried out to study the fate of sulfadiazine, trimethoprim, and oxytetracycline in feathers, plasma, and droppings of broiler chickens. Cage and floor housing, different from current farm practices, were studied. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A longer presence of antibiotics was observed in feathers compared to plasma, with sulfadiazine being present the most. The internal presence (via blood) and the external presence (via droppings) of antibiotics in/on feathers were shown. Analysis of Escherichia coli populations, from droppings and feathers, highlighted that resistant bacteria could be transferred from droppings to feathers in floor-housed animals. The overall results suggest that feathers are a potential reservoir of antimicrobial residues and could contribute to the selection of antibiotic-resistant bacteria in the environment, animals, and humans.


Asunto(s)
Antibacterianos , Oxitetraciclina , Humanos , Animales , Antibacterianos/análisis , Oxitetraciclina/análisis , Pollos , Plumas/química , Sulfadiazina/farmacología , Sulfadiazina/análisis , Trimetoprim/farmacología , Trimetoprim/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...